
Expansion of a Nuclear Blast
[
This is an example of the final draft of a “problem writeup” from Thermodynamics. But many of the 
writing principles are illustrated here.

Diagrams: Quantities in thermodynamics, like temperature and pressure, are not things you can easily 
picture on a diagram. But in Mechanics you all *should* be able to come up with a diagram that labels 
coordinates / angles in the problem you’re working on.

Notice that he *has* included a helpful plot (with labelled axes) of radius of the blast as a function of 
temperature.

Motivation: This problem has obvious and interesting connections with a real world problem!  So the 
“motivation” section deals with the application quite a bit.  Yours may not have an obvious real-world 
application so won’t dwell on that as much.

But his motivation section also includes the sort of “roadmap” comments I’m looking for, like the goal of 
“estimating the relationship between the temperature and the radius”.

Narration: He narrates the mathematical operations he’s doing.  (You don’t have to narrate every step 
of algebra, but can use some shorthand like “after solving this equation for the energy, the result is...”

Part of narrating involves referring to the equations you’re using. In this paper, he has just automatically 
numbered every equation. 

Already your first draft should have not only equations, but also enough narration to lay out what you’re 
trying to accomplish from step to step.
]

Problem 4.15
From Carter’s Classical and Statistical Thermodynamics:

Shortly after detonation the fireball of a uranium fission bomb consists of a sphere of radius 15 m 
and temperature 3× 105 K.  Assuming that the expansion is adiabatic and that the fireball remains 
spherical, estimate the radius of the ball when the temperature is 3000 K.  (Take ɣ = 1.4.)

Motivation
Nuclear weapons are designed as controlled chain reactions intended to cause different levels of 
damage at specific radii from the detonation site.  One of the major destructive components of a nuclear 
blast is the fireball of heat generated by the reaction.  In the pursuit of a more effective weapon which 
attempts to limit collateral damage it is useful to know the extent of the fireball given a certain initial 
heat.  

The following thermodynamic analysis will result in an adequate estimation of the real radii of the blast 
at the given temperature, as well as demonstrating the relationship between the temperature and the 
radius in general.  In this manner, the temperature and associated damage can be found at any radius 
from detonation.  This information is not only useful for the development of nuclear weapons, but it is 
also relevant to evacuation plans and bunker engineering in the case of weaponized nuclear attacks.
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Exposition
The specific heat capacity cv, where heat is added at a constant temperature, can be defined with 
respect to the change in internal energy as cv =  ∂u

∂T
v , which can be rearranged to

cv dT = du . [1]

From the first law of thermodynamics, the change in internal energy can be written as du = δq - δw  , 
and the change in work is defined as δw = Pdv.  Subsituting in for δw gives 

du = δq - Pdv . [2]

Substituting Equation 2 into Equation 1 and rearranging terms gives

δq = cv dT + Pdv . [3]

The specific heat capacity cp, where heat is added at a constant pressure, can be defined with respect 

to the change in enthalpy as cp =  ∂h
∂T
p , which can be rearranged to 

cp dT = dh . [4]

The enthalpy, h, is defined as h = u + Pv, which when differentiated yields dh = du + Pdv + vdP.  Using 
Equation 2 and Equation 4, δq can be written in terms of cp as

δq = cp dT - vdP . [5]

In the statement of the problem, the gas expansion is assumed to be adiabatic.  This is likely an ade-
quate assumption given the rapid speed of the expansion.  For adiabatic processes, δq for the system 
must be equal to zero.  Given this condition, Equations 3 and 5 can be rewritten as 

cv dT = -Pdv , [6]

and

cp dT = vdP . [7]

Dividing Equation 7 by Equation 6 yields
vdP
Pdv

= - cp

cv
. [8]

The constant ɣ given in the description of the problem is defined as cp

cv
.  This can be substituted into 

Equation 8, and the terms can be rearranged to give
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dP
P

= -ɣ dv
v

. [9]

Mathematica can be used to integrate both sides of Equation 9.

Integrate[1 / P, P]

Log[P]

Integrate[-γ / v, v]

-γ Log[v]

Both of these integrals are indefinite and would include a constant of integration, which can be written 
as one combined constant, K0, on the right-hand side of the equation.  Now Equation 9 becomes 

ln(P) = -ɣln(v) + K0 . [10]

Taking the exponential function of both sides yields

P = v-ɣ K , [11]

where K is a new constant equal to ⅇK0.  Equation 11 rearranges to

Pvɣ = K . [12]

Using the ideal gas law, Pv = RT , Equation 12 can be expressed in terms of T, v and ɣ, corresponding 
to the information given in the problem.  Equation 12 becomes

T vɣ-1 = K ' , [13]

where K ' is equal to K
R

.  It can be seen from Equation 13 that for the adiabatic expansion of an ideal 

gas, T is proportional to vɣ-1.  Next, the equation for the volume of a sphere is πr3.  Therefore, the 
problem can be defined mathematically as

T1r1
3γ-1 = T2r2

3ɣ-1 , [14]

where T1 and r1 are the conditions shortly after detonation.  The terms involving the gas constant K’ and 
π are not seen in the equation because they are identical on both sides.  The conditions given in the 
problem can be substituted into Equation 14 to find an equation for r2.  This substitution results in

3×105 K 153 m1.4-1 = (3000 K) r2
31.4-1 . [15]

Equation 15 can now be solved in Mathematica.

Solve[300 000 * (15^3)^0.4 == 3000 * (r^3)^0.4, r]

{{r → -348.119 - 602.96 ⅈ}, {r → -348.119 + 602.96 ⅈ}, {r → 696.238}}

Mathematica finds a number of solutions, but only one of them fits the real application of radius (it must 
be real and positive).  Thus, the radius of the fireball has increased to from 15 m to approximately 696 
m when the temperature has decreased from 300,000 K to 3000 K.

The Radius at Any Final Temperature
It is more useful to consider the radius of the fireball given any final temperature between the initial 
temperature of 3×105 K and room temperature (298 K).  A plot of radius against temperature is one 
useful method of considering the this question.  To achieve this plot, Equation 13 first be solved for K’  
using the given intial temperature and radius.  Then the calculated value can be substituted back into 
Equation 13, which now can be solved for r and plotted against T.  Mathematica solves for K’ below.
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r =  1.22×107

T

2.5

 1
π
3 . [16]

Equation 16 can be plotted with Mathematica to show the relationship between the radius of the fireball 
and its temperature.  A semi-log plot is used for better visualization.

LogPlot
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Diagram of a More Realistic Expansion for a Nuclear Blast
The problem given by Carter assumes the fireball produced by a nuclear fission bomb would be per-
fectly spherical, but this is highly unlikely if it is detonated on Earth.  Shown below is a more realistic 
diagram for the expansion of the fireball, courtesy of abomb1.org.
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