$$
\begin{aligned}
& f_{3, B}(1) \\
& V_{\text {out }}=2.5 \text { squares }(5 \mathrm{mv})=12.5 \mathrm{mV} \\
& V_{\text {in }}=3 \text { squares }(5 \mathrm{mV})=15 \mathrm{mV} \\
& \frac{V_{\text {iut }}}{V_{\text {in }}}=\frac{5}{6} \sim 0.007=1 / 1 \text { satr(2) }=\text { osib }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{f_{\text {dd }}\left(\frac{1}{10}\right)}{V_{\text {out }}=}=5.4(100 \mathrm{mV})=540 \mathrm{mV} \\
& 0.55(1 \mathrm{~V})=0.55 \mathrm{~V} \\
& U_{\text {in }}=5(1 \mathrm{~V})=5 \mathrm{~V} \\
& \frac{V_{\text {out }}}{U_{\text {in }}}=\frac{0.55}{5}=\frac{0.11}{}
\end{aligned}
$$

$$
\text { Square Wave: at } 10 \times f_{3 d B}
$$

The DC component shifts the $V_{\text {in, but }}$ does not affect $U_{\text {our }}$.

With the resistor connected to 5 V on the lower end. $V_{\text {in }}$ and $V_{\text {out }}$ read the same, there is no filtering.

$$
\begin{aligned}
& \text { (2) Low-Pass Fleter } \\
& \frac{1}{10} f_{\text {3lB }} \\
& \begin{aligned}
& V_{\text {out }}=2.4(2 \mathrm{~V}) \\
&=4.8 \mathrm{~V} \\
& \begin{aligned}
V_{\text {in }} & =2.4(2 \mathrm{~V}) \\
& =4.8 \mathrm{~V} \\
\frac{V_{\text {out }}}{V_{\text {in }}} & =1
\end{aligned}
\end{aligned} . \begin{array}{l}
\text { Chu't go bacllwards }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& f_{3 d B} \\
& U_{\text {out }}=2.4(1 \mathrm{~V})=2.4 \mathrm{~V} \\
& V_{\text {in }}=3.5(1 \mathrm{~V})=3.5 \mathrm{~V} \\
& \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{2.4}{3.5} \\
& 10 f_{3 d B} \\
& \begin{array}{l}
V_{\text {out }} \\
=3.6(100 \mathrm{mu} \\
V_{\text {in }}
\end{array}=3.1 \mathrm{~V} \\
& \begin{array}{l}
V_{\text {out }} \\
V_{\text {in }}
\end{array}=\frac{0.36}{3.1}
\end{aligned}
$$

This is a lo-pass filter, so the lower Frequencies go through with almost no change, and higher frequencies are reduced or filtered out.

