9.2 Vectors in the Plane

Vectors in the Plane

1. Let $P=(1,3)$ and $Q=(2,1)$ be points in \mathbb{R}^{2}.

1.1. Graph these points.
1.2. Graph the vector $\overrightarrow{P Q}$. What are its components?
$(\overrightarrow{P Q})_{x} \equiv c=$ \qquad $(\overrightarrow{P Q})_{y} \equiv d=$ \qquad
1.3. Graph the equivalent vector with base at the origin.
1.4. Graph an equivalent vector that does not have its base at the origin.
1.5. Graph a parallel vector that is not equivalent.
1.6. Determine the length of the vector $\overrightarrow{P Q}$. Explain why this is the length.
1.7. Draw the line that passes through the points P and Q.
1.8. Find the equation for this line in the form $y=m x+b$.
1.9. Express m in terms of the components c and d of $\overrightarrow{P Q}$.

Find a parametric equation, in the form $\{(x(t), y(t))=(a, b)+t(e, f): 0<t<1\}$, describing the coordinates of the points on the line segment between P and Q. [Hint to get you started: when $t=0$, you only have to worry about finding a and b.]
2. Consider the graphed vectors.

2.1. Find the components of the vectors $\boldsymbol{u}=\stackrel{\mathrm{OP}}{ }$ and $\boldsymbol{v}=\overrightarrow{\mathrm{OQ}}$.
$u=<$ \qquad
\qquad $>$
$v=<$ \qquad
\qquad $>$
2.2. Determine $3 \boldsymbol{u}$ and $\boldsymbol{u}+\boldsymbol{v}$ numerically and graphically.
2.3. Write $\boldsymbol{w}=\langle 2,8\rangle$ as a linear combination of \boldsymbol{u} and \boldsymbol{v}. (A "linear combination" means adding and/or subtracting scalar multiples of of \boldsymbol{u} and \boldsymbol{v}.)

