Math 213 - 11.3-4 - Tabular Data

Wave Heights on the Open Sea

The wave heights *h* in the open sea depend on the speed *v* of the wind (knots) and the length of time *t* that the wind has been blowing at that speed (hours). Values for the function h = f(v,t) are in the following table.

v\t	5	10	15	20	30	40	50
10	2	2	2	2	2	2	2
15	4	4	5	5	5	5	5
20	5	7	8	8	9	9	9
30	9	13	16	17	18	19	19
40	14	21	25	28	31	33	33
50	19	29	36	40	45	48	50
60	24	37	47	54	62	67	69

Questions:

- 1. What is the value of f(40,15)? What is its meaning?
- 2. What is the meanings of the function h = f(30,t)? h = f(v,30)?
- 3. Estimate the values of $\frac{\partial f}{\partial v}(40,20)$ and $\frac{\partial f}{\partial t}(40,20)$ and interpret their meanings.
- 4. Find a linear approximation to the wave height function when *v* is near 40 knots and *t* is near 20 hours. (Round the numerical coefficients to two decimal places).
- 5. Using the linear approximation, estimate the wave heights when the wind has been blowing for 24 hours at 43 knots. (Round the answer to two decimal places).
- 6. What do you think is the $\lim_{t \to \infty} \frac{\partial f}{\partial t}$?

Math 213 - 11.3-4 - Tabular Data

Partial Derivatives and Data

	x=0	x=10	x=20	x=30
y=0	89	80	74	71
y=2	93	85	80	76
y=4	98	91	85	81
y=6	104	98	92	88
y=8	112	105	99	94

The function f(x,y) is given by the following data.

What is f(10,6)?

If f(x,y) = 98 and y = 4 then what is x?

Estimate $\frac{\partial f}{\partial x}$ at (20,4).

Estimate
$$\frac{\partial f}{\partial y}$$
 at (20,4).

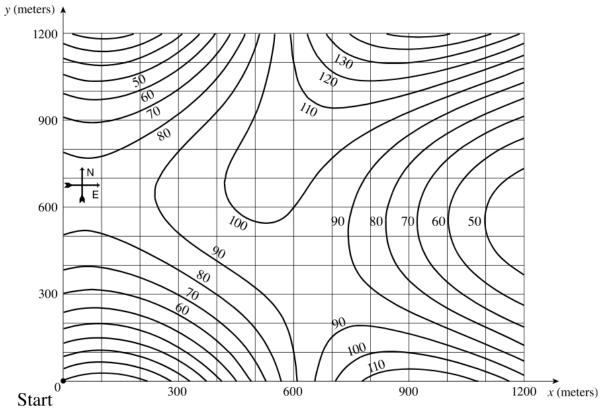
Use these partial derivatives to estimate f(22,4).

Use these partial derivatives to estimate f(20,5).

Estimate f(22,5).

Math 213 - 11.3-4 - Graphical Data

The following is a map with curves of the same elevation of a region in Orangerock National Park.



We define the altitude function A(x,y) as the altitude at a point x meters east and y meters north of the origin ("Start").

- 1. Estimate A (300,300) and A (500,500).
- 2. Estimate A_x (300,300) and A_y (300,300).
- 3. What do A_x and A_y represent in physical terms?

Math 213 - 11.3-4 - Graphical Data

4. In which direction does the altitude increase most rapidly at the point (300, 300)?

5. Use your estimates of A_x (300,300) and A_y (300,300) to approximate the altitude at (320, 310).

Math 213 - 11.3-4 - More Graphical Data

1. Refer to the following contour graph.

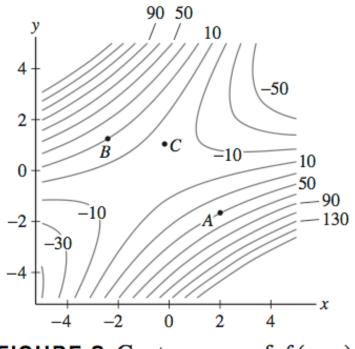


FIGURE 8 Contour map of f(x, y).

a) Estimate f_x and f_y at the point A.

b) Starting at point *B*, in which direction does *f* increase most rapidly?

c) At which of A, B, or C is f_y smallest?

2. Refer to the following contour graph of f(x,y).

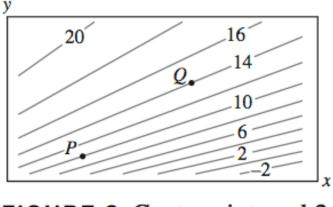


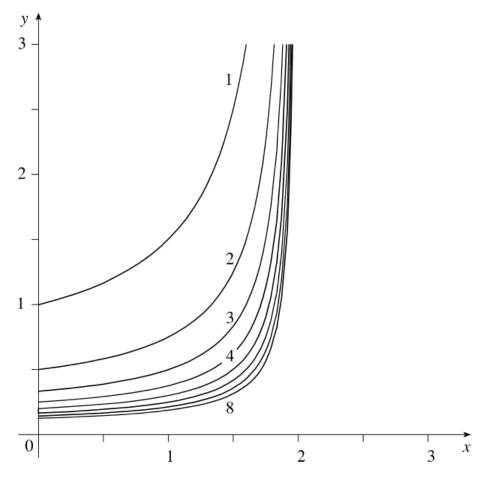
FIGURE 9 Contour interval 2.

a) Explain why f_x and f_y are both larger at P than at Q.

b) Explain why $f_x(x,y)$ is an increasing function of y. That is, for any x, $f_x(x,b_1) > f_x(x,b_2)$ whenever $b_1 > b_2$.

Math 213 - 11.3 - Mixed Partials

The level curves of a function z = f(x, y) are given below.



Use the level curves of the function to decide the signs (positive, negative, or zero) of the derivatives $f_{xx}, f_{yy}, f_{xy}, f_{yx}$, of the function at the point $\left(\frac{3}{2}, \frac{1}{2}\right)$