1. Suppose you are at a the point with coordinates $(0.6,0.8)$ in a region where the altitude is given by $f(x, y)=\sin (\pi x+2 \pi y)$. In what direction(s) should you go in order to stay at the same elevation? Justify your answer with a brief description of how you solved the problem.
2. When is the directional derivative of a function equal to zero?
3. Suppose that you are given only the following information about a function f :

$$
\begin{aligned}
& f(8,5)=33.1 \\
& f(8.01,5)=33.3 \\
& f(8,5.02)=33.0
\end{aligned}
$$

Estimate

$$
\begin{aligned}
& f_{x}(8,5) \\
& f_{y}(8,5) \\
& \nabla f(8,5) \\
& D_{\mathbf{u}} f(8,5) \quad \text { where } \mathbf{u}=\frac{1}{5}(3 \mathbf{i}+4 \mathbf{j})
\end{aligned}
$$

4. Some bacteria can sense the "nutritional gradient" and will move in the direction of higher concentration of nutrients. Imagine that such a bacteria is placed at the point $\mathrm{P}(10,10)$ in a dish in which the nutrition concentration is given by by $N(x, y)=400-2 x^{2}-y^{2}$. Sketch the path of the bacteria as it swims towards higher concentrations.
5. The temperature field in the neighborhood of $\left(\frac{\pi}{4}, 0\right)$ is given by $T(x, y)=\sqrt{2} e^{-y} \cos (x)$.

Find the path followed by a heat seeking particle originating at $\left(\frac{\pi}{4}, 0\right)$.

