[12.1] - Double integrals from data

Some of the values of the function $f(x, y)$ are given in the table below:

	$\mathbf{x}=\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$
$\mathbf{y = 8 0}$	77	78	79	81	82
$\mathbf{8 5}$	82	84	86	88	90
$\mathbf{9 0}$	87	90	93	96	100
$\mathbf{9 5}$	93	96	101	107	114
$\mathbf{1 0 0}$	99	104	110	120	132

Estimate

$$
\begin{equation*}
\int_{y=80}^{100} \int_{x=20}^{60} f(x, y) d x d y \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta x \Delta y \tag{1}
\end{equation*}
$$

where $\Delta x=20$ and $\Delta y=10$. (That is, the 2×2 light overlay). Which point to use in each sub-rectangle? Try:

1. midpoints
2. points farthest away from the origin

[12.1] - Back to the park

The following is a map showing contour lines for a region of Orangerock National Park.

Estimate (numerically) the average elevation by sampling the elevation at the mid-point of each sub-rectangle.

