Math 213-12.3-Limits on Double Integrals

Suppose we wanted to find $\iint f(x, y) d A$ over the region bounded by the curves $\begin{gathered}x+y=1 \\ x^{2}+y^{2}=1\end{gathered}$.

Suppose we wanted to integrate first with respect to y and then with respect to x.

$\int_{x=0}^{x=1} \int_{y=1-x}^{y=\sqrt{1-x^{2}}} f(x, y) d y d x$

Suppose we wanted to integrate first with respect to x and then with respect to y.

$\int_{y=0}^{y=1} \int_{x=1-y}^{y=\sqrt{1-y^{2}}} f(x, y) d x d y$
Order Matters!

Compute $\iint(4 x+2) d A$

Compute $\iint e^{x^{2}} d A$

Fill in the required limit of integration for each of the following double integrals $\iint_{R} f(x, y) d A$, where R is the region indicated in the accompanying sketch.

1. $\int_{0}^{1} \int_{[7]}^{4 y} f(x, y) d x d y+\int_{1}^{2} \int_{[7]}^{[7]} f(x, y) d x d y$

2. $\int_{0}^{3} \int_{[?]}^{[?]} f(x, y) d y d x+\int_{3}^{5} \int_{[?]}^{[?]} f(x, y) d y d x$

