Lab 07 - The "square-root solid"

This lab has both paper and Mathematica pieces. You may hand in one scan of the paper and one Mathematica notebook for both of you who work together.

Consider the volume integral over the solid S given by

$$
\begin{equation*}
V=\iiint_{S} d V=\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{z=\sqrt{x^{2}+y^{2}}}^{1} d z d y d x \tag{1}
\end{equation*}
$$

1. [Mathematica] Plot together the surfaces $z=u_{1}(x, y)=\sqrt{x^{2}+y^{2}}$ and $z=u_{2}(x, y)=1$ which are the lower and upper surfaces bounding the volume to be found. Some Mathematica guidance:

- Use plot3D[\{function 1, function 2\}, ...] to plot two functions at the same time.
- Make both surfaces "see through" with the option PlotStyle -> Opacity[0.5].
- Make one plot where the x domain is $(-1,1)$ and the y domain is $(-1,1)$.
- Make a second plot where the x domain is $(-1,1)$ and you restrict y to the domain in the integral, $\left(-\sqrt{1-x^{2}},+\sqrt{1-x^{2}}\right)$. What solid is this?

2. Rewrite the volume integral as $V=\iiint_{S} d z d x d y$ with appropriate limits.
3. Rewrite the volume integral as $V=\iiint_{S} d x d y d z$ with appropriate limits.
4. Using geometry, what should the volume of this solid be? Justify your answer.
5. [Mathematica] Use Mathematica to evaluate all three of the integrals you've written out. They should agree! Guidance:
o Pull up the Writing Assistant from the Palettes menu.

- Don't use Integrate[]. Instead, from the typesetting pallette (in a Wolfram Language cell), insert the definite integral object and fill in the limits and integration variable, so that the triple integral visually matches the one you're trying to find.
- Work from the outside of each triple integral to the innermost integral. You'll insert the definite integral object 3 times for each triple integral.

6. Referring back to the integral at the beginning of this assignment: Evaluate the $d z$ integral, then convert the remaining double-integral to polar coordinates. Write down (below) your double integral in polar coordinates and then evaluate the result [Mathematica] to show (hopefully!) that this also gives the same answer.
