Class 08 Gradient and Optimization

Gradient

Suppose $f(x, y)=x^{3} y^{2}$. Estimate and then find $D_{\{3,1\rangle} f(1,-2)$ from the definition.
$D_{\boldsymbol{v}} f(P)=\lim _{h \rightarrow 0} \frac{f(P+h \boldsymbol{v})-f(P)}{h}$. Call directional if $\|\boldsymbol{v}\|=1$.
Plot3D[x^3*y^2, \{x, 0,5\}, \{y,-3, 0\}, MeshFunctions -> \{\#3 \& \}, Mesh \rightarrow 40]


```
\(f\left[x_{-}, y_{-}\right]:=x^{3} y^{2}\)
\(a=1 ; b=-2 ; p=\{a, b\} ;\)
\(x l o=0 ; x h i=5 ; y l o=-3 ; y h i=0 ;\)
v = \{3, 1\};
plot1 \(=\) ContourPlot[f[x, y], \(\{x, x l o, x h i\},\{y, y l o, y h i\}, C o n t o u r s \rightarrow 40] ;\)
plot2 = Graphics[\{Red, Point[p], Arrow[\{p, p+v\}],
    Text[Style["P", 12], p-0.05 v], Text[Style["v", 12, Bold], p+1.05v]\}];
Show [
```

 plot1,
 plot2]

$f\left[x_{-}, y_{-}\right]:=x^{3} y^{2}$
$\frac{f[1+3 h,-2+h]-f[1,-2]}{h} / . h \rightarrow 1$
$\operatorname{Limit}\left[\frac{f[1+3 h,-2+h]-f[1,-2]}{h}, h \rightarrow 0\right]$
60
32

Exercise

Find $D_{\langle 1.5,0.5\rangle} f(1,-2)$.
$f\left[x_{-}, y_{-}\right]:=x^{3} y^{2}$
$\frac{f[1+1.5 h,-2+0.5 h]-f[1,-2]}{h} / . h \rightarrow 1$
$\operatorname{Limit}\left[\frac{f[1+3 h,-2+h]-f[1,-2]}{h}, h \rightarrow 0\right]$
31.1563

32
Let $P=(a, b)$ and $\boldsymbol{v}=\left\langle v_{x}, v_{y}\right\rangle$. Then
$\frac{f(P+h \boldsymbol{v})-f(P)}{h}=\frac{f\left(a+h v_{x}, b+h v_{y}\right)-f(a, b)}{h}$
Hence, $f_{x}(P)=D_{\langle 1,0\rangle} f(P)$
Use the linear approximation to write

$$
\begin{aligned}
& \frac{f\left(a+h v_{x}, b+h v_{y}\right)-f(a, b)}{h} \\
& \approx \frac{f(a, b)+f_{x}(a, b)\left(a+h v_{x}-a\right)+f_{y}(a, b)\left(b+h v_{y}-b\right)-f(a, b)}{h} \\
& =\frac{f_{x}(a, b)\left(h v_{x}\right)+f_{y}(a, b)\left(h v_{y}\right)}{h} \\
& =f_{x}(a, b) v_{x}+f_{y}(a, b) v_{y} \\
& =\nabla f_{(a, b)} \cdot v
\end{aligned}
$$

If the error in the linear approximation goes to zero faster than h (this is what Rogawski calls "local linearity" and is true if the first partial derivatives are continuous), then $D_{\boldsymbol{v}} f(P)=\nabla f(P) \cdot \boldsymbol{v}$.

Exercise

Find $D_{\langle 3,1\rangle} f(1,-2)$ from the above formula.
$\operatorname{Grad}[f[x, y],\{x, y\}] \cdot\{3,1\} / \operatorname{Sqrt}[10] / \cdot\{x \rightarrow 1, y \rightarrow-2\}$
$16 \sqrt{\frac{2}{5}}$
$\mathrm{f}\left[\mathrm{x}_{-}, \mathrm{y}_{-}\right]:=\mathrm{x}^{3} \mathrm{y}^{2}$
\{Derivative[1, 0][f][1, -2], Derivative[0, 1][f][1, -2]\}.\{3, 1\}
32
$\left\|D_{v} f(P)\right\|=\|\nabla f(P)\|\|\boldsymbol{v}\||\cos \theta|$, where θ is the angle between the direction \boldsymbol{v} and the gradient $\nabla f(P)$. Thus, the directional derivative is maximized when $\boldsymbol{v}=\nabla f(P)$.

```
\(f\left[x_{-}, y_{-}\right]:=x^{3} y^{2} ;\)
\(a=1 ; b=-2 ; p=\{a, b\} ;\)
\(x l o=0 ; x h i=2 ; y l o=-3 ; y h i=-1\);
plot1 = ContourPlot[f[x, y], \{x, xlo, xhi\}, \(\{y, y l o, y h i\}\), Contours \(\rightarrow 40]\);
Manipulate[
    v = \{ \(\operatorname{Cos}[\theta], \operatorname{Sin}[\theta]\} ;\)
    plot2 = Graphics[\{Red, Point[p], Arrow[\{p, p+v\}]\}];
    dvf = N[\{Derivative[1, 0][f][a, b], Derivative[0, 1][f][a, b]\}.v];
    Show[plot1, plot2, PlotLabel -> If[show, " \(\mathrm{D}_{\mathrm{v}} \mathrm{f}(\mathrm{P})=\) " <> ToString[dvf], ""]],
    \(\{\theta, 0,2 \pi\}\),
    \{\{show, False\}, \{True, False\}\}]
```


$\left.-0.33282 f \begin{array}{l}(0,1) \\ {[\mathrm{a}, \mathrm{b}]+0.942991 \mathrm{f}}\end{array} \quad[\mathrm{a}, \mathrm{b}]\right]$.
$\operatorname{Grad}[f[x, y],\{x, y\}] / \cdot\{x \rightarrow 1, y \rightarrow-2\}$
$\{12,-4\}$
$f\left[x_{-}, y_{-}\right]:=x^{3} y^{2} ;$
$\mathrm{GD}:=\operatorname{Grad}[\mathrm{f}[\mathrm{x}, \mathrm{y}],\{\mathrm{x}, \mathrm{y}\}] / \cdot\{\mathrm{x} \rightarrow 1, \mathrm{y} \rightarrow-2\}$
GradDirection
$\{12,-4\}$

GD
$\{12,-4\}$

```
N[ArcTan[12, -4] + 2 * Pi] / Pi * 180
```

341.565

N [A]
-0.321751
$N[A+2$ * Pi$]$
5.96143

N [(A + 2 * Pi) / Pi * 180.]
341.565

Gradient and Motion

Suppose the density of an object $x \mathrm{~cm}$ from the back, $y \mathrm{~cm}$ from the left side, and $z \mathrm{~cm}$ from the bottom is given by $f(x, y, z)=x y+3 z \mathrm{~g} / \mathrm{cm}^{2}$.

Find $f_{y}(2,1,3)$ and interpret in words.
Find $D_{\langle 1 / 3,2 / 3,2 / 3\rangle} f(2,1,3)$ and interpret in words.
Find $\frac{\partial f}{\partial \rho}$ where ρ is a spherical coordinate, and interpret is words.
If you started at $(2,1,3)$ and moved in the direction of greatest density at a speed proportional to the density, what would be the path of your motion?

```
f[x_, y_, z_] := x y + 3 z
Derivative[0, 1, 0][f][2, 1, 3]
```

2

If you started at $(2,1,3)$ and moved in the direction of greatest density at a speed proportional to the density, what would be the path of your motion? To answer this question, we need the gradient at arbitrary points.

```
grad = {D[f[x, y, z], x], D[f[x,y,z], y], D[f[x,y,z],z]}
{y,x,3}
```

The time derivatives of the spacial variables must be proportional to the gradient. This results in a differential equation.

```
DSolve[{x'[t] == y[t], y'[t] == x[t], z'[t] == 3, x[0] == 2, y[0] == 1, z[0] == 1},
    {x[t], y[t], z[t]}, t]
{{x[t]->\frac{1}{2}\mp@subsup{e}{}{-t}(1+3\mp@subsup{e}{}{2t}),y[t]->\frac{1}{2}\mp@subsup{e}{}{-t}(-1+3\mp@subsup{e}{}{2t}),z[t]->1+3t}}
```

PathVector

$$
\begin{aligned}
& \left\{\left\{x[t] \rightarrow \frac{1}{2} e^{-t}\left(1+3 e^{2 t}\right), y[t] \rightarrow \frac{1}{2} e^{-t}\left(-1+3 e^{2 t}\right), z[t] \rightarrow 1+3 t\right\}\right\} \\
& \text { ParametricPlot3D}\left[\left\{\frac{1}{2} e^{-t}\left(1+3 e^{2 t}\right), \frac{1}{2} e^{-t}\left(-1+3 e^{2 t}\right), 1+3 t\right\},\{t, 0,2\}\right]
\end{aligned}
$$

Optimization

Compare and contrast finding maxima and minima of single variable and multiple variable real-valued functions.

Find the maximum and minimum of $f(x)=4+6 x-x^{2}$ on the interval [0,7]. Do by hand first. Include the 2nd derivative test.

Minimize[\{f[x], $0 \leq x \leq 7\}, x]$
Maximize[\{f[x], $0 \leq x \leq 7\}, x]$
$\{-3,\{x \rightarrow 7\}\}$
$\{13,\{x \rightarrow 3\}\}$
Find the maximum and minimum of $f(x, y)=x^{3}+y^{3}-12 x y$ on the square $-1 \leq x \leq 5,-1 \leq y \leq 5$. Do by hand first. Include the 2nd derivative test.
$f\left[x_{-}, y_{-}\right]:=x^{3}+y^{3}-12 x y$
Plot3D[f[x,y], \{x,-1,5\}, \{y,-1,5\}]
ContourPlot[f[x, y], \{x,-1, 5\}, \{y,-1, 5\}]

$f\left[x_{-}, y_{-}\right]:=x^{3}+y^{3}-12 x y$
Minimize[\{f[x,y], $-1 \leq x \leq 5,-1 \leq y \leq 5\},\{x, y\}]$
Maximize[\{f[x, y], $-1 \leq x \leq 5,-1 \leq y \leq 5\},\{x, y\}]$
$\{-64,\{x \rightarrow 4, y \rightarrow 4\}\}$
$\{184,\{x \rightarrow-1, y \rightarrow 5\}\}$

Give an example of a function f with the property that $f_{x}(a, b)=f_{y}(a, b)=0$ but f does not have a local maximum or minimum at (a, b).
The previous example $f(x, y)=x^{3}+y^{3}-12 x y$ at $(0,0)$.

