Class 08 Gradient and Optimization

Gradient

Suppose $f(x, y) = x^3 y^2$. Estimate and then find $D_{(3,1)} f(1, -2)$ from the definition.

 $D_{\boldsymbol{v}}\,f(P)=\lim\nolimits_{h\to 0}\frac{f(P+h\,\boldsymbol{v})-f(P)}{h}.\ \ \text{Call directional if}\ \|\boldsymbol{v}\|=1.$

Plot3D[$x^3 * y^2$, {x, 0, 5}, {y, -3, 0}, MeshFunctions -> {#3 &}, Mesh \rightarrow 40]


```
f[x_{-}, y_{-}] := x^{3} y^{2}
a = 1; b = -2; p = {a, b};
xlo = 0; xhi = 5; ylo = -3; yhi = 0;
v = {3, 1};
plot1 = ContourPlot[f[x, y], \{x, xlo, xhi\}, \{y, ylo, yhi\}, Contours \rightarrow 40];
plot2 = Graphics[{Red, Point[p], Arrow[{p, p + v}],
      Text[Style["P", 12], p - 0.05 v], Text[Style["v", 12, Bold], p + 1.05 v]}];
Show[
 plot1,
 plot2]
 0.0
-0.5
-1.0
-1.5
-2.0
-2.5
                          2
                                     3
f[x_{-}, y_{-}] := x^{3} y^{2}
\frac{f[1+3h, -2+h] - f[1, -2]}{\cdot} / \cdot h \to 1
Limit \left[\frac{f[1+3h,-2+h]-f[1,-2]}{h}, h \to 0\right]
60
```

Exercise

32

Find $D_{(1.5,0.5)} f(1, -2)$.

$$\begin{split} &f[x_-, y_-] := x^3 \ y^2 \\ &\frac{f[1+1.5 \ h, -2+0.5 \ h] - f[1, -2]}{h} \ /. \ h \to 1 \\ &\text{Limit} \Big[\frac{f[1+3 \ h, -2+h] - f[1, -2]}{h}, \ h \to 0 \Big] \\ &31.1563 \\ &32 \\ &\text{Let } P = (a, \ b) \ \text{and} \ \textbf{v} = \left\langle v_x, \ v_y \right\rangle. \ \text{Then} \\ &\frac{f(P+h \ v) - f(P)}{h} = \frac{f(a+h \ v_x, b+h \ v_y) - f(a,b)}{h} \end{split}$$

Hence, $f_x(P) = D_{(1,0)} f(P)$

Use the linear approximation to write

$$\frac{f(a+h v_{x}, b+h v_{y})-f(a,b)}{h}
\approx \frac{f(a,b)+f_{x}(a,b) (a+h v_{x}-a)+f_{y}(a,b) (b+h v_{y}-b)-f(a,b)}{h}
= \frac{f_{x}(a,b) (h v_{x})+f_{y}(a,b) (h v_{y})}{h}
= f_{x}(a,b) v_{x} + f_{y}(a,b) v_{y}
= \nabla f_{(a,b)} \cdot \mathbf{V}$$

If the error in the linear approximation goes to zero faster than h (this is what Rogawski calls "local linearity" and is true if the first partial derivatives are continuous), then $D_{\mathbf{v}} f(P) = \nabla f(P) \cdot \mathbf{v}$.

Exercise

Find $D_{(3,1)} f(1, -2)$ from the above formula.

$$\begin{aligned} & \text{Grad}[f[x,y], \{x,y\}].\{3,1\} \, / \, \, \text{Sqrt}[10] \, /. \, \{x \to 1,\, y \to -2\} \\ & 16 \, \sqrt{\frac{2}{5}} \\ & f[x_-,y_-] := x^3 \, y^2 \\ & \{\text{Derivative}[1,0][f][1,-2], \, \text{Derivative}[0,1][f][1,-2]\}.\{3,1\} \\ & 32 \end{aligned}$$

 $||D_{\mathbf{v}}f(P)|| = ||\nabla f(P)|| ||\mathbf{v}|| |\cos \theta|$, where θ is the angle between the direction \mathbf{v} and the gradient $\nabla f(P)$. Thus, the directional derivative is maximized when $\mathbf{v} = \nabla f(P)$.

```
f[x_{-}, y_{-}] := x^{3} y^{2};
a = 1; b = -2; p = \{a, b\};
xlo = 0; xhi = 2; ylo = -3; yhi = -1;
plot1 = ContourPlot[f[x, y], \{x, xlo, xhi\}, \{y, ylo, yhi\}, Contours \rightarrow 40];
Manipulate[
v = \{Cos[\theta], Sin[\theta]\};
plot2 = Graphics[\{Red, Point[p], Arrow[\{p, p+v\}]\}];
dvf = N[\{Derivative[1, 0][f][a, b], Derivative[0, 1][f][a, b]\}.v];
Show[plot1, plot2, PlotLabel -> If[show, "D_v f(P) = " <> ToString[dvf], ""]],
\{\theta, 0, 2\pi\},
\{\{show, False\}, \{True, False\}\}]
```

+

Show: Could not combine the graphics objects in Show[plot1, , PlotLabel \rightarrow D_vf(P) =

```
N[ArcTan[12, -4] + 2 * Pi] / Pi * 180
341.565
N[A]
-0.321751
N[A+2*Pi]
5.96143
N[(A + 2 * Pi) / Pi * 180.]
341.565
```

Gradient and Motion

Suppose the density of an object x cm from the back, y cm from the left side, and z cm from the bottom is given by f(x, y, z) = xy + 3z g/cm².

Find $f_{\nu}(2, 1, 3)$ and interpret in words.

Find $D_{(1/3,2/3,2/3)} f(2, 1, 3)$ and interpret in words.

Find $\frac{\partial f}{\partial \rho}$ where ρ is a spherical coordinate, and interpret is words.

If you started at (2, 1, 3) and moved in the direction of greatest density at a speed proportional to the density, what would be the path of your motion?

```
f[x_{-}, y_{-}, z_{-}] := x y + 3 z
Derivative[0, 1, 0][f][2, 1, 3]
```

If you started at (2, 1, 3) and moved in the direction of greatest density at a speed proportional to the density, what would be the path of your motion? To answer this question, we need the gradient at arbitrary points.

```
grad = \{D[f[x, y, z], x], D[f[x, y, z], y], D[f[x, y, z], z]\}
{y, x, 3}
```

The time derivatives of the spacial variables must be proportional to the gradient. This results in a differential equation.

DSolve[{x'[t] == y[t], y'[t] == x[t], z'[t] == 3, x[0] == 2, y[0] == 1, z[0] == 1}, {x[t], y[t], z[t]}, t]
$$\left\{ \left\{ x[t] \rightarrow \frac{1}{2} e^{-t} \left(1 + 3 e^{2t} \right), y[t] \rightarrow \frac{1}{2} e^{-t} \left(-1 + 3 e^{2t} \right), z[t] \rightarrow 1 + 3 t \right\} \right\}$$

PathVector

$$\left\{ \left\{ x\,[\,t\,] \,\to\, \frac{1}{2}\,\,\mathrm{e}^{-t}\,\,\left(1\,+\,3\,\,\mathrm{e}^{2\,\,t} \right) \,\text{, }y\,[\,t\,] \,\to\, \frac{1}{2}\,\,\mathrm{e}^{-t}\,\,\left(-\,1\,+\,3\,\,\mathrm{e}^{2\,\,t} \right) \,\text{, }z\,[\,t\,] \,\to\, 1\,+\,3\,\,t \right\} \right\}$$

ParametricPlot3D
$$\left[\left\{ \frac{1}{2} e^{-t} \left(1 + 3 e^{2t} \right), \frac{1}{2} e^{-t} \left(-1 + 3 e^{2t} \right), 1 + 3 t \right\}, \{t, 0, 2\} \right]$$

Optimization

Compare and contrast finding maxima and minima of single variable and multiple variable real-valued functions.

Find the maximum and minimum of $f(x) = 4 + 6x - x^2$ on the interval [0, 7]. Do by hand first. Include the 2nd derivative test.


```
Minimize[\{f[x], 0 \le x \le 7\}, x]
Maximize[\{f[x], 0 \le x \le 7\}, x]
\{-3, \{x \rightarrow 7\}\}
\{13, \{x \rightarrow 3\}\}
```

Find the maximum and minimum of $f(x, y) = x^3 + y^3 - 12xy$ on the square $-1 \le x \le 5$, $-1 \le y \le 5$. Do by hand first. Include the 2nd derivative test.

$$f[x_{-}, y_{-}] := x^{3} + y^{3} - 12 x y$$

 $Plot3D[f[x, y], \{x, -1, 5\}, \{y, -1, 5\}]$
 $ContourPlot[f[x, y], \{x, -1, 5\}, \{y, -1, 5\}]$

$$f[x_{,}, y_{]} := x^{3} + y^{3} - 12 \times y$$

$$Minimize[\{f[x, y], -1 \le x \le 5, -1 \le y \le 5\}, \{x, y\}]$$

$$Maximize[\{f[x, y], -1 \le x \le 5, -1 \le y \le 5\}, \{x, y\}]$$

$$\{-64, \{x \to 4, y \to 4\}\}$$

$$\{184, \{x \to -1, y \to 5\}\}$$

Give an example of a function f with the property that $f_x(a, b) = f_y(a, b) = 0$ but fdoes not have a local maximum or minimum at (a, b).

The previous example $f(x, y) = x^3 + y^3 - 12 x y$ at (0, 0).