Lab 04 Vector-Valued Functions

[Your name(s) here!]

Examples to steal from

Here are examples of some of the kinds of things you'll do in this lab.

Plotting a parametric vector function:

This is really a vector function $\vec{r}(t)$ where the vector is a position vector. It's got 3 functions for $\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t})$, and $z(t)$ in its declaration, But l'm going to risk a little clarity by writing it without bothering to put the vector over top...

```
r[t_] := {t, t Sin[t], t Cos[t]}
```

ParametricPlot3D[r[t], $\{t, 0,8 \pi\}$, PlotStyle \rightarrow Blue]

```
Displaying a point on the curve, together with the derivative vector at that point.
Show [
    ParametricPlot3D[r[t], {t, 0, 8\pi}, PlotStyle }->\mathrm{ Blue],
    Graphics3D[ {
        (* Big red dot at r[t=3.5 \pi] *)
        Red, PointSize[.04], Point[r[3.5\pi]],
        (* Arrow[ ] requires coordinates of tail, then head *)
        Arrow[{ r[3.5\pi], r[3.5\pi] + r'[3.5\pi] } ]
    } ]
]
```


Animating the "particle"

```
Animate [
    Show [
        ParametricPlot3D[r[k],{k, 0, 8\pi}, PlotStyle }->\mathrm{ Blue],
        Graphics3D[ {
            (* Big red dot at r[t=3.5 \pi] *)
            Red, PointSize[.04], Point[r[t]],
            (* Arrows require coordinates of tail, then head *)
            Arrow[{ r[t],r[t] + r'[t] } ]
        } ]
    ],
    {t, 0, 8\pi}
]
```

Speed: Speed is the magnitude (or "norm") of the derivative vector: $\left|\vec{r}^{\prime}(\mathrm{t})\right|$. Here's how you can graph the (scalar) speed as a function of time:

Plot[Norm[r'[t]] , \{t, 0, 8 $\pi\}]$

Exercise I

$\mathrm{N}[\{\mathrm{E}, \mathrm{e}\}]$
4 pts Consider the two arcs $\boldsymbol{a}(t)=\left\langle e^{t} \sin t, e^{t} \cos t, e^{t}\right\rangle, 0 \leq t \leq 2 \pi$ and $\boldsymbol{b}(t)=\langle t \sin (\ln t), t \cos (\ln t), t\rangle, 1 \leq t \leq e^{2 \pi}$. [In Mathematica, type E (not e) to get the base of the natural logarithm.] Plot both space curves and show that they trace out identical curves. You can display two plots sides by enclosing them in list brackets, like \{ ParametricPlot3d[...], ParametricPlot3d[...] \}.

Exercise 2

6 pts In order to examine how a particle moves according to each function, create an animation of each like this: First create a display of the arc and a large dot located at $\boldsymbol{r}(t)$. Then "Manipulate [. .]" the plot to move the dot as t is varied with a slider. Finally substitute Animate for Manipulate. This will change t at a constant rate. (See if you can get the derivative vector to show as well).

Comment on differences that you observe between the two arc functions.

Exercise 3

4 pts Calculate $\mathbf{a}^{\prime}(t)$, $\left|\mathbf{a}^{\prime}(t)\right|, \boldsymbol{b}^{\prime}(t)$, and $\left|\boldsymbol{b}^{\prime}(t)\right|$. Graph the speeds. Describe how these results support (or challenge) the observations you made above.

Exercise 4

10 pts Use Mathematica to calculate the arc length separately for each vector function. Use the formulae we developed in class, which involves integrating the "speed"...

$$
L=\int_{a}^{b}\left|\vec{r}^{\prime}(t)\right| d t
$$

Calculate the arc-length using both $\boldsymbol{a}(t)$ and $\boldsymbol{b}(t)$-they should agree if the space-curves are identical.
And then use Mathematica's built-in ArcLength[...] function using both $\boldsymbol{a}(t)$ and $\boldsymbol{b}(t)$ and see if that function gives the same result.

