Lab05 - Partial derivatives - part I

[Your name(s) here...]

A partial derivative of a multivariable function is a derivative with respect to one of the variables, while holding the other variables constant.

If z is a function of two variables-- $z=z(x, y)$-- then holding y constant, for example, $y=1$, leaves us with a function that depends on only one variable: $z(x, 1.0)$. This is a "vertical" trace of the function. It's the intersection of the surface $y=1$ with the surface given by $z(x, y)$.

Below, a surface is plotted together with the planes $x=\pi / 2$ and $y=1$.

```
z[\mp@subsup{x}{-}{\prime},\mp@subsup{y}{_}{\prime}]:=y\operatorname{Cos}[x\mp@subsup{y}{}{3}]
plot1 = Plot3D[ z[x,y],
    {x, 0, \pi}, {y, 0, 2}, ViewPoint }->{10,10, 20}
    AxesLabel }->{x,y,"z"},LabelStyle -> Directive[Bold, Medium]];
plot2 = Graphics3D[
    {Opacity[.5], Blue, Polygon[{{0, 1, - 2}, {0, 1, 2},{\pi, 1, 2}, {\pi, 1, - 2}}],
        Gray, Polygon[{{\frac{\pi}{2},0,-2},{\frac{\pi}{2},0,2},{\frac{\pi}{2},2,2},{\frac{\pi}{2},2,-2}}]}];
Show [
    plot1,
    plot2]
```


Problem I 4pts

Rotate the plot above as needed, and make a hand sketch of the function $z(x, 1)$. Think carefully about identifying the positive direction for the independent variable x !

Rotate the plot above as needed, and make a hand sketch of the function $z(\pi / 2, y)$. (Insert a snapshot of your sketches)

Problem 2 2pts

Now, use Mathematica's Plot[...] function to plot each of the 2 functions above. (And then see how well your hand sketches worked out.) Think carefully about identifying the positive direction for the independent variable y !

Problem 34 pts

Calculate the functional form of f_{x} and f_{y} by hand, and then evaluate $f_{x}(\pi / 2,1)$ and $f_{y}(\pi / 2,1)$. (Insert a snapshot of your calculations).

Problem 4 2pts
Using Mathematica, Calculate f_{x} and f_{y}, using $\mathbf{D}[\ldots, \mathbf{x}]$ and $\mathbf{D}[\ldots, y]$ functions and evaluate $f_{x}(\pi / 2,1)$ and $f_{y}(\pi / 2,1)$.

