[11.2] - The shape of the solid
Each double integral describes the volume of a geometrical shape. Describe (and/or sketch) the shape. Use geometry to calculate the volume corresponding to the double integral.
-
$\int\int_{[0,1]\times[0,1]}(1-y)\,dy\,dx$
-
$\int_{-3}^3 \int_{y=-2}^2 \sqrt{4-y^2}\,dy\,dx$
-
$\int_{-1}^1\int_{y=-2}^3( 1-|x|) \,dy\,dx$