Homework / Assignments

You will always write up the homework problems yourself. But please do work together with others in the class on the assignments.



Homework #1 | #2 |#3 | #4 | #5 | #6 | #last

4.2 - Separation of variables in Cartesian coordinates means $$\psi(x,y,z)=X(x)Y(y)Z(z).$$

Assignment #6

Griffiths
Chapter 4: 27, 31, 34(ab only), 35

Problem 4.27

A normalized spinor state, $\chi=\begincv a\\b\endcv$, satisfies the normalization condition: $$\innerp{\chi}{\chi}\equiv \chi^\dagger\chi = \begincv a^* & b^*\endcv \begincv a\\b\endcv = 1 $$ The expectation value of an operator $\hat Q$ is: $$\langle \hat Q \rangle \equiv \bra{\chi}\hat Q\ket{\chi}=\chi^\dagger\hat Q\chi.$$ In matrix terms: if $\hat Q=\begincv c&d\\e&f\endcv $, then the expectation value becomes: $$ \innerp{\chi}{\hat Q \chi}=\chi^\dagger\hat Q\chi=\begincv a^*&b^*\endcv \begincv c&d\\e&f\endcv \begincv a\\b\endcv.$$

a.) Normalization: $$1=\innerp{\chi}{\chi}=|A|^2\begincv -3i & 4\endcv\begincv 3i\\4\endcv =|A|^2(+9+16).$$ So $A=1/\sqrt 25=1/5.$

b.) Expectation values:

$\hat S_x=\frac{\hbar}{2}\begincv 0&1\\1&0\endcv$, so its expectation value is: $$\begineq \langle S_x \rangle &=& \frac{\hbar}{2}|A|^2 \begincv -3i & 4\endcv\begincv 0&1\\1&0\endcv \begincv 3i \\ 4 \endcv \\ &=& \frac{\hbar}{2}\frac{1}{25} \begincv -3i & 4\endcv \begincv 4\\3i \endcv \\ &=& \frac{\hbar}{50} (-12 i +12i)=0 \endeq $$ Doing the same sort of thing with $S_y$ and $S_z$: $$\langle S_y\rangle = -\frac{12}{25}\hbar; \ \ \ \langle S_z\rangle = -\frac{7}{50}\hbar $$

Problem 4.2

part c: The energy of the 14th level is $E_{14}=\frac{27\pi^2\hbar^2}{2ma^2}$. The combinations that give rise to this energy are $\{n_x,n_y,n_z\}=\{1,1,5\},\{1,5,1\},\{5,1,1\},\{3,3,3\}$. What's unique?: All the other energy levels consist of permutations of just one triplet of integers $\{n_x,n_y,n_z\}$. But here, two different triplets of integers have the same energy.

Assignment #9 - Friday, April 5

Read these 4 pages from The Principles of Quantum Mechanics by P.A.M. Dirac. Write: Summarize, with full sentences, but in outline form, the reasons that Dirac gives for a theory beyond classical mechanics. Write a paragraph about the one reason you find most compelling, and why.

Griffiths
Chapter 4: problems 10, 11a, 12b, 13ab, 16, 25, 27

Notes/hints

Assignment #10 -

Griffiths
Chapter 4: 34b, 35, 38, 49 "Bell problems"--Chapter 4: 50*; Chapter 12: 1; Paul's Last problem

Notes/hints

Problem 4.50 - Here's how to figure out the $\hat S_\alpha^{(2)}$ operator.

Selected answers

Problem 4.34b - Show that $\hat S_\pm\ket{00}=0$.

I'll show this for the raising operator. The proof for the lowering operator proceeds along the same lines. Using $\hat S_+= \hat S^{(1)}_+ + \hat S^{(2)}_+$ where $\hat S_+^{(1)}\downarrow^{(1)}=\hbar\uparrow^{(1)}$ and $\hat S_+^{(1)}\uparrow^{(1)}=0$. You get the same thing for the second spin with (1)$\to$(2). $$\begineq \hat S_+\ket{00}&=&(\hat S^{(1)}_+ + \hat S^{(2)}_+)\frac{1}{\sqrt 2} [\uparrow\downarrow - \downarrow\uparrow]\\ &=&\frac{1}{\sqrt 2} \[(\hat S^{(1)}_+ \uparrow)\downarrow - (\hat S^{(1)}_+ \downarrow)\uparrow + \uparrow(\hat S^{(2)}_+\downarrow) - \downarrow(\hat S^{(2)}_+\uparrow)\]\\ &=&\frac{1}{\sqrt 2} \[0 - \hbar \uparrow\uparrow + \hbar\uparrow\uparrow - 0\]\\ &=& 0 \endeq$$

Problem 4.49d - If you measure the $y$-component of spin on the state $\chi=1/3\begincv 1-2i\\2 \endcv$ (in the $S_z$ basis), what is the chance of measuring $+\hbar/2$?

We already found the eigenstates of $\hat S_y\equiv\frac{\hbar}{2} \begincv 0 & -i\\i&0\endcv$. They are: $$ \chi_+^{(y)}=\frac{1}{\sqrt{2}}\begincv -i\\1 \endcv; \ \chi_-^{(y)}=\frac{1}{\sqrt{2}}\begincv i\\1 \endcv\ . $$ with eigenvalues $+\hbar/2$ and $-\hbar/2$.

The state $\chi$ can be written as a superposition of the two $\hat S_y$ eigenstates: $$\chi = c_+\chi_+^{(y)} + c_-\chi_-^{(y)}.$$ The probability of measuring $S_y=+\hbar/2$ is equal to $|c_+|^2$, where $$\begineq c_+&=&\innerp{\chi_+^{(y)}}{\chi}=\chi_+^{(y)\dagger}\chi\\ &=&\frac{1}{\sqrt 2}\begincv +i & 1\endcv 1/3\begincv 1-2i\\2 \endcv\\ &=&\frac{1}{\sqrt {18}}\begincv +i & 1\endcv \begincv 1-2i\\2 \endcv\\ c_+&=&\frac{1}{\sqrt {18}}(+i +2+2)=\frac{4+i}{\sqrt {18}}. \endeq $$ So, the probability of measuring $+\hbar/2$ is $|c_+|^2$: $$|c_+|^2=c_+^*c_+=\frac{4-i}{\sqrt {18}}\frac{4+i}{\sqrt {18}}=\frac{16+1}{18}=\frac{17}{18}.$$ We could use the same method to calculate $c_-$. But since there are only two states, and the probabilities must sum to 1, this means $|c_+|^2+ |c_-|^2=1$. So, $|c_-|^2=1-17/18=1/18$. So, the probability of measuring $S_y=-\hbar/2$ is 1/18.

There are two ways to calculate the expectation value: We could do it this way: $$\langle \hat S_y \rangle=\bra{\chi}\frac{\hbar}{2}\begincv 0&-i\\+i&0\endcv\ket{\chi}.$$ Or, since we know the probabilities, we could take the probability weighted average: $$\langle \hat S_y \rangle=\left(+\frac{\hbar}{2}\right)P_+ + \left(-\frac{\hbar}{2}\right)P_- =\frac{17}{18}\frac{\hbar}{2}-\frac{1}{18}\frac{\hbar}{2}=\frac{16}{36}\hbar=\frac{4}{9}\hbar$$ Either approach gives the same answer.

Last problem - Bell's inequality is: $$1+P(\myv b, \myv c)\geq |P(\myv a,\myv b)-P(\myv a, \myv c)|$$ Since the vectors in $P$ are all unit vectors, $$P(\myv v_1,\myv v_2)=-\myv v_1\cdot\myv v_2=-|v_1||v_2|\cos\alpha = -\cos\alpha,$$ where $\alpha$ is the angle between $\myv v_1$ and $\myv v_2$.

  1. For the case that $\myv a=\hat z$ and $\myv b=\hat x$: $P(\myv a,\myv b)=0$, $P(\myv a,\myv c)=-\cos\theta$, $P(\myv b,\myv c)=-\cos(\pi/2-\theta)$.
  2. For the case that $\myv a=\hat z$ and $\myv b=-\hat z$: $P(\myv a,\myv b)=1$, $P(\myv a,\myv c)=-\cos\theta$, $P(\myv b,\myv c)=-\cos(\pi-\theta)$.

    Griffiths
    Chapter 4: 1: a only, 10, 11: a only, 13: a,b only, 16, 17

    Assignment #4 - due Friday, April 7

    Chapter 4: 22, 23, 24, 25, 27

    Problem 4.22, Construct $Y_l^l$ from ladder operators

    Problem 4.23, Applying the raising operator

    Problem 4.24, 2 masses connected by a rod

    Problem 4.27, Uncertainty relations for spin components

    In part c: use the the general property that $$\sigma^2_{\hat{Q}} =\langle(\hat{Q} -\langle\hat{Q}\rangle)^2\rangle = \langle\hat{Q}^2\rangle - \langle\hat{Q}\rangle ^2.$$

    Assignment #3 - due Wednesday, March 30

    Problem 4.17, Earth - Sun as quantized systemSequential measurements

    Wolfram Alpha calculation of Earth-sun Bohr radius

    Assignment #2 - due Monday, March 21

    Griffiths
    Chapter 3: 22, 27, 37, 39a
    Chapter 4: 2, 3, 5 (Just do $Y_3^2$)

     

    Assignment #1 (due Friday, March 11)

    Griffiths
    Chapter 3: 2, 6, 7, 13

     

Assignment #last

Griffiths
Chapter 4: 31, 45, 49

Notes



Problem 4.31 Construct the spin matrices $\mym S_x$, $\mym S_y$, and $\mym S_z$ for a spin 1 particle.

If a particle has total spin 1, then we know that there are 3 possible (eigen) values for the $z$ component of spin: -\hbar, 0, and +\hbar. Call the corresponding eigenstates $\chi_-$, $\chi_0$, and $\chi_+$. We know that the effect of $\hat S_z$ operating on these states should be: $$\hat S_z\chi_+ = +\hbar\chi_+; \ \ \hat S_z\chi_0 = 0\chi_0; \ \ \hat S_z\chi_- = -\hbar\chi_-$$ If we write the eigenstates as these column vectors... $$\chi_+=\begincv 1\\0\\0 \endcv ; \ \ \chi_0=\begincv 0\\1\\0\endcv ; \ \ \chi_-=\begincv 0\\0\\1\endcv $$ Find a $3 \times 3$ matrix which, when multiplied by each of the 3 spinor states in turn, gives the desired eigenvalue in turn, times the corresponding spinor state.

then we can get the desired outcomes with this matrix: $$\mym S_z=\hbar\begincv 1 & 0 & 0\\0 & 0 & 0\\0 & 0 & -1\endcv$$ You should verify this by multiplying the matrix by each of the eigenvectors in turn.


Now, we use the same approach as in my notes to construct the matrices for the $x$ and $y$ components:

  1. We figure out the raising and lowering matrices, $\mym S_+$ and $\mym S_-$,using eq. [4.136],
  2. We use eq. [4.105] to write $\mym S_x=(\mym S_+ + \mym S_-)/2$ and $\mym S_y=(\mym S_+ - \mym S_-)/(2i)$

Figuring out the raising operator:

Write the raising operator with unknown factors: $$\mym S_+=\begincv a&b&c\\d&e&f\\j&k&l\endcv.$$ According to 4.136 (with s=1), $$\hat S_+\chi_-=\hbar\sqrt{1(1+1)-(-1)(-1+1)}\chi_0=\hbar\sqrt 2\chi_0$$ That is: $$\begincv a&b&c\\d&e&f\\j&k&l\endcv\begincv 0\\0\\1\endcv =\sqrt 2\begincv 0\\1\\0\endcv.$$ Carrying out the multiplication, this gives you values for $c$, $f$, and $l$.

Applying the $\hat S_+$ to $\chi_0$ and $\chi_+$ will give you the other elements of the matrix.

Then take a similar approach to figure out the elements of the $\hat S_-$ matrix....

This is only possible if $c=0$, $f=\sqrt 2$, and $l=0$.

Repeating this process for (using 4.136 again) the operations $\hat S_+\chi_0=\sqrt 2 \chi_+$ and $\hat S_+\chi_+=0$, we finally have all the matrix elements of the raising operator: $$\mym S_+=\sqrt 2 \begincv 0&1&0\\0&0&1\\0&0&0\endcv$$

Doing the same thing to find the lowering operator, it turns out to be: $$\mym S_-=\sqrt 2 \begincv 0&0&0\\1&0&0\\0&1&0\endcv$$

Now we can construct our two desired matrices: $$\mym S_x=\frac 12(\mym S_+ +\mym S_-)=\frac{\hbar}{\sqrt 2} \begincv 0&1&0\\1&0&1\\0&1&0\endcv$$ and $$\mym S_y=\frac{1}{2i}(\mym S_+-\mym S_-)=\frac{i\hbar}{\sqrt 2} \begincv 0&-1&0\\1&0&-1\\0&1&0\endcv$$





Problem 4.45
Estimating the probability that the electron is inside the nucleus

a.) ...That is to say, integrate the probability density over all angles $\theta$ and $\phi$, and over radii $0\lt r\lt b$.